Dynamic Learning Rate Adjustment Algorithm

نویسندگان

  • Brian Bullins
  • Sergiy Popovych
  • Hansen Zhang
چکیده

Developing an investment portfolio for the stock market that will yield positive returns is the primary goal of investors worldwide. A variety of models and algorithms have been developed to decide upon a distribution which maximizes gains in the market, a few examples being the Geometric Brownian Motion model and the universal portfolio. One particular algorithm, known as online gradient descent, can be used for portfolio management with reasonable success. Its performance depends heavily, however, on the choice of the learning rate η, and it is difficult to know a priori which values will yield the best results. In our project, we explored various means of adjusting η based on different attributes of the stock market in an attempt to determine a more systematic approach to dynamically learn profitable values of η. One especially promising algorithm involved an implementation of multiplicative weights, where each expert is represented by a gradient descent algorithm with a unique value for η. To determine the profitability of our algorithms, we tested them on a variety of long-term daily-resolution stock data sets from many different markets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing stable neural identifier based on Lyapunov method

The stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. This paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability of this algorithm. Also, stable learning algorithm for parameters of ...

متن کامل

Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)

In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...

متن کامل

An Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach

Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...

متن کامل

Predicting Dynamic Difficulty

Motivated by applications in electronic games as well as teaching systems, we investigate the problem of dynamic difficulty adjustment. The task here is to repeatedly find a game difficulty setting that is neither ‘too easy’ and bores the player, nor ‘too difficult’ and overburdens the player. The contributions of this paper are (i) the formulation of difficulty adjustment as an online learning...

متن کامل

Fuzzy Mixed Assembly Line Sequencing and Scheduling Optimization Model Using Multiobjective Dynamic Fuzzy GA

A new multiobjective dynamic fuzzy genetic algorithm is applied to solve a fuzzy mixed-model assembly line sequencing problem in which the primary goals are to minimize the total make-span and minimize the setup number simultaneously. Trapezoidal fuzzy numbers are implemented for variables such as operation and travelling time in order to generate results with higher accuracy and representative...

متن کامل

A Hybrid Optimization Algorithm for Learning Deep Models

Deep learning is one of the subsets of machine learning that is widely used in Artificial Intelligence (AI) field such as natural language processing and machine vision. The learning algorithms require optimization in multiple aspects. Generally, model-based inferences need to solve an optimized problem. In deep learning, the most important problem that can be solved by optimization is neural n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015